AN INTRODUCTION TO NATURAL LANGUAGE PROCESSING (NLP) AND LINGUISTIC COMPUTATION

Lecture 1 - An introduction to NLP and LC Computational Linguistics

References

- Essential references
 - http://www.cs.colorado.edu/~martin/slp.html
 - chapters: 1, 2, 3, 4, 5, 12, 13, 14, 16, 17, 18, 19, 20

- Extended References
 - Advanced readings will be presented at each lecture. Those readings won't be included at the oral exam, but they should help you in shaping your project and better understanding various aspects of NLP and LC

Today

- Introduction to Natural Language Processing (NLP)
 - Basic ideas and tools
 - Approaching natural language processing from a cognitive perspective

General Information

- Goals
 - Deep understanding of what's needed for fully describing a natural language
 - What's a corpus and how it can be used
 - How linguistic data can be (semi)automatically processed
 - Be independent in reading advanced papers in this field

- Teaching
 - Lectures (lecture notes and course information will be available at: http://www.ciscl.unisi.it/didattica.htm)
 - Labs (you should bring your laptop in class!)

- Evaluation
 - Class participation (20% of final grade)
 - Project presentation (40% of final grade)
 - Oral exam (40% of final grade) on course topics (see References)
Can machines think?

Alan Turing (1950) “Computing Machinery and Intelligence”, Mind

“Can machines think?” This should begin with definitions of the meaning of the terms “machine” and “think.”

Turing’s Test (the imitation game)

Eliza (Weizenbaum, 1966):

Human: Well, my boyfriend made me come here.

ELIZA: Your boyfriend made you come here?

Human: He says I’m depressed much of the time.

ELIZA: I am sorry to hear you are depressed.

Human: It’s true. I’m unhappy.

ELIZA: Do you think coming here will help you not to be unhappy?

HAL 9000 (Kubrick & Clarke, 2001 A Space Odyssey; 1968):

Dave: Open the Pod bay doors, HAL.

Hal: I’m sorry, Dave. I’m afraid I can’t do that.

Wolfram Alpha (Wolfram Co., 2016)

question: “what’s the size of an apple?”

WA answer: apple | maximum recorded trunk diameter > (data not available)
What HAL 9000 should have known

- **speech recognition / synthesis**
 - analysis/production of speech signal, formants identification, syllabification, word segmentation, prosodic contours

- **natural language understanding / generation**
 - morphology
 - dogs = dog + s
 - Syntax
 - ([the boy] [eats [an apple]])
 - Semantics
 - what does a word mean? And a sentence?
 - Pragmatics
 - is there a communicative intention beyond the literal meaning?
 - Discourse
 - interpreting phrases across sentences
 - Information Extraction / Retrieval
 - Inference ...

A naïf plot of NLP applications

Speech recognition synthesis

Morphological analysis

Syntactic analysis

Semantic analysis

Discourse analysis

Information extraction

Knowledge representation

Word Processing

- Syllabification (extremely good)
 - ex. Linguistics > Lin-guis-tics
- Spell-checking (good)
 - ex. house > house
 - (T9, Swipe...)
- Grammar-checking (bad)
 - ex. John sing > John sings
- Stylistic correction (bad...)
 - ex. the nail gets removed from the board > the nail is removed from the board
- Synonyms, Opposites (thesaurus)
- Single word translation
- ...

What can we do now?
What can we do now?

- **Human Computer Interaction**
 - **Speech recognition** (Apple Siri, Alexa, Microsoft Cortana, Google Now)
 ex. /kasa/ > casa
 - **Pseudo-comprehension**
 Where could I find a Chinese restaurant nearby? > [opening map with precise]
 - **Natural language generation**
 [previous context] > I'm opening your calendar...
 - **Information filtering/retrieval/extraction**
 ex. “these days China Stock Exchange collapsed” >
 entity: Beijing Stock Exchange
 status: lowering;
 time: end of October 2015

- **Question answering**
 ex. How high is Monte Bianco??
 (4,810,40 m s.l.m.)

 - **Machine translation** (sufficiently good, but...)
 - Google Translator:
 o tanto va la gatta al lardo che ci lascia lo zampino
 so the cat goes to the fat that it leaves its handle (April 2013)
 The pitcher goes so much that it leaves its handle (February 2014, October 2015)
 “the pitcher goes so often to the well that it leaves its handle”
 - it's raining cats and dogs
 piove cani e gatti (April 2013, February 2014)
 piove a catinelle (October 2015)
 piove a secchiate (since October 2016)
 - the old law rule
 la vecchia legge la regola (April 2013, February 2014)
 the old one reads the rule (October 2018)
What can we do now?

- Text Analysis (e.g., Linguistic Annotation tool at CNR Pisa)

What really happens today...

Cognitive-computational approach

- Describing cognitive modules (vision, equilibrium, movement...)

 Language is an expression of a **competence** (data-structure)

- **Processing** (specific linguistic task that uses competence models)

- **Performance** (competence usage under limited resources)

Representation of the linguistic problem

- **Competence** (data-structure)

 - What kind of information structure do we need?
 - A word can start by wo... [word] but not by wb...
 - The s in “sing” is different from the one in “roses”
 - “the roses are beautiful” Vs. **“the are beautiful roses”**
 - “The cat chases the dog” >
 subj: cat[agent]; verb: chase[action]; obj: dog[patient]
 - “the television chases the cat”
 - “the houses” Vs. “some house”
Representation of the linguistic problem

- **Competence** (data-structure)
 - Specification of primitives and features at every level:
 - Phonemes – distinctive features...

Speech recognition

Speech recognition
Representation of the linguistic problem

Speech Recognition

- «I’ll get there at 4:00»
- Features extraction
 - Annotated corpora
- Probabilistic phonetic alignment models
- Probabilistic phrasal models

- Competence (data-structure)
 - Primitives:
 - Phonemes – distinctive features
 - Morphemes – combinatorial rules
 - Words – significant morphemes bundles
 - Phrases – natural groups of words
 - Thematic roles – agent, patient ...

Representation of the linguistic problem

- **Processing** (competence in use)
 - Combinatorial principles; how do we use primitives components of competence:
 - Phonological level – phonotactic restrictions
 - Morphological level – inflectional (say > says / said) and derivational rules (easy > easily)
 - Processing is not just performance (that is the use of competence under resources limitation)

- **Lexicon**
 - Spiral notebook model (how do we map levels?)
 - The dog beats the cat
 - \(\lambda x \text{ dog}(x) \land \lambda y \text{ cat}(y) \land \text{beats}(x,y) \)
 - \(/d\text{h e}/ \land /d\text{ oh g}/ \ldots \)

- **An historic example: Sutra for Sanskrit**
 - Panini (400-600AC): 1700 base elements divided in classes (e.g. nouns, verbs etc.) + combination rules (about 4000) > Sanskrit description.

- **The complexity** of the problem derives from non-univocal mapping:
 - Lexical ambiguity (e.g. Buffalo buffalo buffalo Buffalo buffalo)
 - Syntactic ambiguity (e.g. I saw the man with the binocular)
 - Semantic ambiguity (e.g. sheets get dried)
 - A problem is harder if we have multiple choices all equally plausible (non-determinism).
Representation of the linguistic problem

- Doing **Parsing** means accepting or rejecting an input; in case of acceptance a structural description should be provided.
 - **Lexical** (tagger): `house` > Part-of-Speech = Common noun
 - **Morphological**: `house` > `{N, countable, singular}`
 - **Syntactic** (parser): `\[
 \begin{array}{c}
 S \\
 \quad \quad VP \\
 \quad \quad \quad \quad DP \hspace{0.5cm} \text{John} \\
 \quad \quad \quad \quad V' \hspace{0.5cm} \text{loves} \\
 \quad \quad \quad \quad \quad \quad \quad DP \hspace{0.5cm} \text{Mary} \\
 \quad \quad \quad \quad V' \hspace{0.5cm} \end{array}
 \]
 - **Semantic**: `f(agent, patient) > loves(John, Mary)`

...