Automatic Lexical Acquisition

Paola Merlo
University of Geneva

Why automatic lexical acquisition?

- TEXT MINING
- TEXT CLASSIFICATION
- QUESTION ANSWERING
- DIALOGUE MANAGEMENT
- LARGE DETAILED LEXICONS
- TEXT SUMMARISATION
- INFORMATION EXTRACTION
- TEMPLATE FILLING

Verb classification

- Verbs are the primary source of relational information in a sentence

 Jane hit the ball

 NP Agent Theme

- Classification as indirect learning of the lexicon for

 - easy organisation: verbs can be organised around shared syntactic and semantic properties
 - consistent extension: associating a verb with a class allows it to inherit detailed linguistic information

Example of verb classification

- English verb classes according to Levin

 approximately 200 classes for 3000 verbs

- For example

 Manner of Motion: race, jump, skip, moosey
 Sound Emission: buzz, ring, crack
 Change of State: burn, melt, pour
 Creation/Transformation: build, carve
 Psychological state: admire, love, hate, despise
Verb alternations

How does one reach such a classification?

Hypothesis: verbs with a similar semantics express their arguments in a similar way. They exhibit alternations.

Example:

- if a verb can be transitive: melt butter jump horse
- and it can be intransitive: butter melts horse jumps
- and it can have an adjectival form: melted butter *jumped horse
- then it is a verb of change of state

Related Work

Syntactic information -- subcategorization frames
- machine readable dictionary (Dorr 97)
- examples of usage in a corpus (Brent 93, Briscoe and Carroll 97, McCarthy and Korhonen 98, Korhonen 2000, 2002, Lapata 99, Manning 93)

Semantic information
- selectional restrictions (Resnik 96)
- verbal aspect (Siegel and McKeown 2001);

Our Proposal (Merlo and Stevenson 2001)

- Verbs which share semantic properties also share syntactic properties
- There is a regular mapping from meaning components to syntactic usage (Levin 93, Pinker 89)
- Can reason in reverse direction and induce semantic class from syntactic usage

Methodology

- Analyse verb classes to determine discriminating thematic properties
- Develop indicators (indicator random variables) that approximate thematic properties and that can be counted in a corpus
- Collect relative frequencies to generate a statistical summary of the thematic behaviour of each verb
- Apply machine learning algorithm (e.g. decision tree induction) to produce a classifier
English Verb Classes

Three classes of optionally intransitive verbs

<table>
<thead>
<tr>
<th>Manner of Motion</th>
<th>The rider raced the horse past the barn (Causal) Agent</th>
</tr>
</thead>
<tbody>
<tr>
<td>The horse raced past the barn Agent</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Change of State</th>
<th>The cook melted the butter (Causal) Theme</th>
</tr>
</thead>
<tbody>
<tr>
<td>The butter melted Theme</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Creation/Transformation</th>
<th>The contractors built the house Agent Theme</th>
</tr>
</thead>
<tbody>
<tr>
<td>The contractors built all summer Agent</td>
<td></td>
</tr>
</tbody>
</table>

Summary of Thematic Assignments

<table>
<thead>
<tr>
<th>Classes</th>
<th>Transitive</th>
<th>Intransitive</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Subject</td>
<td>Object</td>
</tr>
<tr>
<td>Manner of Motion (race)</td>
<td>(Causal) Agent</td>
<td>Agent</td>
</tr>
<tr>
<td>Change of State (melt)</td>
<td>(Causal) Agent</td>
<td>Theme</td>
</tr>
<tr>
<td>Create/Transform (build)</td>
<td>Agent</td>
<td>Theme</td>
</tr>
</tbody>
</table>

MAIN IDEA

Underlying thematic differences among the verb classes will surface as detectable differences in the usage of surface indicators.

Features for Automatic Classification: Example

<table>
<thead>
<tr>
<th>Classes</th>
<th>Transitive</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>MoM</td>
<td>(Causal) Agent</td>
<td>The jockey raced the horse Agent</td>
</tr>
<tr>
<td>CoS</td>
<td>(Causal) Agent Theme</td>
<td>The cook melted the butter</td>
</tr>
<tr>
<td>C/T</td>
<td>Agent Theme</td>
<td>The workers built the house</td>
</tr>
</tbody>
</table>

Relationship between Frequency and Transitivity

- **Transitivity by causation: MoM, CoS**
 - Greater complexity, two events

- **Agentive object : MoM** (transitive unergative)
 - Infrequent in English: only MoM and SE
 - Infrequent typologically (* Italian, French, German, Portuguese, Gungbe and Czech. Vietnamese only comitative)
 - Difficult to process (Bever 1970, Stevenson Merlo 97, Filip et al. CUNY 98)

 - **Expected frequency of transitive use** MoM < CoS < C/T
Features for Automatic Classification (2/3)

<table>
<thead>
<tr>
<th>Classes</th>
<th>Object of Transitive</th>
<th>Object of Intransitive</th>
<th>Subject of Transitive</th>
<th>Subject of Intransitive</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>MoM</td>
<td>Agent</td>
<td>Agent</td>
<td>The jockey raced the horse</td>
<td>The horse raced</td>
<td></td>
</tr>
<tr>
<td>CoS</td>
<td>Theme</td>
<td>Theme</td>
<td>The cook melted the butter</td>
<td>The butter melted</td>
<td></td>
</tr>
<tr>
<td>C/T</td>
<td>Theme</td>
<td>Agent</td>
<td>no alternation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Feature: Causativity.
Amount of overlap between subject of intransitive and object of transitive.

Features for Automatic Classification (3/3)

<table>
<thead>
<tr>
<th>Classes</th>
<th>Subject of Transitive</th>
<th>Subject of Intransitive</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>MoM</td>
<td>Causer</td>
<td>Agent</td>
<td>The jockey raced the horse</td>
</tr>
<tr>
<td>CoS</td>
<td>Causer</td>
<td>Theme</td>
<td>The cook melted the butter</td>
</tr>
<tr>
<td>C/T</td>
<td>Agent</td>
<td>Agent</td>
<td>The workers built</td>
</tr>
</tbody>
</table>

Feature: Animacy
Themes are more likely to be inanimate.

Summary of Expectations of Features

- **Transitivity**: MoM < CoS < C/T
- **Causativity**: CoS > {MoM, C/T}
- **Animacy**: CoS < {MoM, C/T}

Indicator Random Variables for Transitivity

TRANS:
- 1 if verb is used transitively
- 0 if verb is used intransitively

PASS:
- 1 if verb is passive
- 0 if verb is active

VBN:
- 1 if verb is past participle
- 0 if verb is not past participle
Indicator Random Variables for Animacy

\[
\text{ANIM}_v; \begin{cases}
1 & \text{if subject of verb is animate} \\
0 & \text{if subject of verb is inanimate}
\end{cases}
\]

Animacy is approximated by personal pronouns

Indicator Random Variables for Causativity

Let a sample space of pairs of transitive objects and intransitive subjects of the verb be given. We define the CAUS indicator random variable for the verb as follow:

\[
\text{CAUS}_v; \begin{cases}
1 & \text{if subject = object} \\
0 & \text{otherwise}
\end{cases}
\]

Probabilities

Probabilities of random variables are estimated by simple relative frequencies

Example

\[
P(\text{TRANS}) = \frac{C(v,o)}{C(v,o) + C(v,0)}
\]

Occurrences of verb followed by object over total occurrences of verb, followed by object or not

Vector template: [verb,TRANS,PASS,VBN,CAUS,ANIM,class]

Example: [open, .69, .09, .21, .16, .36, CoS]

Data Collection -- Method (1/2)

TRANS

Verb token immediately followed by potential object counted as transitive else intransitive.

Potential object = Closest nominal group after verb token.

PASS

Main verb (VBD) = active.

Token with tag VBN counted as active, if closest preceding auxiliary was have, counted as passive if closest preceding auxiliary was be.

VBN

POS label according to the tagged corpus.
Data Collection -- Method (2/2)

CAUS

- Extract multiset of subjects and multiset of objects for each verb.
- Calculate overlap of two multisets.
- Take ratio between cardinality of the overlap multiset, and the sum of the cardinality of the subject and object multisets.

ANIM

- Ratio of occurrences of pronoun subjects to all subjects for each verb.

Statistical Analysis of the Data

Mean relative frequencies

<table>
<thead>
<tr>
<th></th>
<th>TRANS</th>
<th>PASS</th>
<th>VBN</th>
<th>CAUS</th>
<th>ANIM</th>
</tr>
</thead>
<tbody>
<tr>
<td>MoM</td>
<td>.23</td>
<td>.07</td>
<td>.12</td>
<td>.00</td>
<td>.25</td>
</tr>
<tr>
<td>CoS</td>
<td>.40</td>
<td>.33</td>
<td>.27</td>
<td>.12</td>
<td>.07</td>
</tr>
<tr>
<td>ObD</td>
<td>.62</td>
<td>.31</td>
<td>.26</td>
<td>.04</td>
<td>.15</td>
</tr>
</tbody>
</table>

All statistically significant at p< .01, except the difference between CoS and ObD for PASS and VBN

English Supervised Experiments

Materials

- 59 verbs (20 MoM, 19 CoS, 20 C/T)
- 65 million tagged words (29 million parsed) (WSJ and Brown corpus)

Method

- Learner: C5.0 (decision tree induction algorithm)
- Training/Testing: 10-fold cross-validation repeated 50 times

Results

- **Overall results**: accuracy 69.8% (baseline 33.9, expert upper bound 86.5%)
 (recent replication on chunked BNC accuracy 82.4%)

- 54% reduction in error rate on previously unseen verbs

- **Effectiveness of features**
 All features, except PASS, are useful in classification

- **Class by class accuracy**
 MoM verbs are most accurately classified

- **Analysis of errors**
 Hypothesized relation between features and thematic assignments is confirmed
Results

• Overall results: accuracy 69.8% (baseline 34%, expert upper bound 86.5%) (recent replication on chunked BNC accuracy 82.4%)

• Effectiveness of features:
 All features, except PASS, are useful in classification

<table>
<thead>
<tr>
<th>FEATURES</th>
<th>Accuracy %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 TRANS PASS VBN CAUS ANIM</td>
<td>69.8</td>
</tr>
<tr>
<td>2 TRANS PASS VBN CAUS ANIM</td>
<td>69.8</td>
</tr>
<tr>
<td>3 TRANS PASS VBN CAUS ANIM</td>
<td>67.3</td>
</tr>
<tr>
<td>4 TRANS PASS VBN CAUS ANIM</td>
<td>66.5</td>
</tr>
<tr>
<td>5 TRANS PASS VBN CAUS ANIM</td>
<td>63.2</td>
</tr>
<tr>
<td>6 TRANS PASS VBN CAUS ANIM</td>
<td>61.6</td>
</tr>
</tbody>
</table>

Class by Class Results

<table>
<thead>
<tr>
<th>FEATURES</th>
<th>UNUSED</th>
<th>MoM</th>
<th>CoS</th>
<th>C/T</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 TRANS PASS VBN CAUS ANIM</td>
<td>73.9</td>
<td>68.6</td>
<td>64.9</td>
<td></td>
</tr>
<tr>
<td>2 TRANS VBN CAUS ANIM</td>
<td>PASS</td>
<td>76.2</td>
<td>75.7</td>
<td>61.6</td>
</tr>
<tr>
<td>3 TRANS PASS VBN ANIM</td>
<td>CAUS</td>
<td>65.1</td>
<td>60.0</td>
<td>62.8</td>
</tr>
<tr>
<td>4 TRANS PASS CAUS ANIM</td>
<td>VBN</td>
<td>66.7</td>
<td>65.0</td>
<td>51.3</td>
</tr>
<tr>
<td>5 TRANS PASS VBN CAUS</td>
<td>ANIM</td>
<td>72.7</td>
<td>47.0</td>
<td>60</td>
</tr>
<tr>
<td>6 PASS VBN CAUS ANIM</td>
<td>TRANS</td>
<td>78.1</td>
<td>51.5</td>
<td>61.9</td>
</tr>
</tbody>
</table>

Analysis of Errors

• TRANS sharpens 3 way distinction
• ANIM particularly helpful in discriminating CoS
• VBN (past participle) primarily discriminates C/T

Conclusion

• Hypothesis confirmed
 corpus-based indicators reflect underlying semantic properties of verbs

• Method has high performance
Generalising to a new class

- **New Class** Psychological State Verbs
- **New thematic roles** Experiencer Stimulus

Example

<table>
<thead>
<tr>
<th>Experiencer</th>
<th>Stimulus</th>
</tr>
</thead>
<tbody>
<tr>
<td>The rich</td>
<td>love</td>
</tr>
<tr>
<td>The rich</td>
<td>love too</td>
</tr>
</tbody>
</table>

Indicators: TRANS, CAUS, ANIM

PROG use of the progressive (stative/non stative)

carefully indicator of volitionality (agent vs experiencer)

Classes: MoM, CoS, C/T, Psy

Results and Discussion

Results

- 75.6% accuracy (baseline 57.4%)
- 43% reduction in error rate

TRANS, ANIM, PROG, Carefully best features

Relationship between indicators and thematic properties holds across classes

Some specific indicators carry across thematic roles

Discovery

We do not need to investigate new indicators for each new class (73.5% accuracy with only old indicators)

Conjecture: Indicators are partially correlated with thematic roles and they capture commonalities across roles

Relevance for acquisition of verb meaning (1/3)

(Stevenson and Merlo CUNY 2001)

Syntactic Bootstrapping

The acquisition of a verb's meaning is constrained by the verb's linguistic contexts -- its subcategorisation frames (Gleitman 1990) and its argument structure (Gillette et al. 1999).

Question

How does the learner induce subcategorisation and argument structure information?

Relevance for acquisition of verb meaning (2/3)

Our proposal

Argument structure distinctions can be learnt from simple syntactic information

- frequencies of subcategorization frames
- alternations in the realisation of arguments (requires correspondences across subcategorization frames)
- other alignments between syntax and semantics: animacy

Results of unsupervised experiments (hierarchical clustering)

Indicators distinguish classes at 63% accuracy
On-going and Future Research

• **NLP** - more languages (Italian, German, Chinese)
- more learning features (aspect)
- automatic distinction of arguments from adjuncts
 (Merlo EACL'03)

• **Machine Learning**
 - generic feature space (Joanis)
 - multi-lingual classification using co-training
 - unsupervised clustering of Spanish verbs (Esteve Ferrer)

• **Applications** - enriching document representations for summarisation

THANK YOU